1. A new graduate accepts a job as a data processing clerk at a starting salary of \$18,500 per year, with an annual increase of \$750. Suppose he stays in the job for ten years. How much will he earn in total after 10 years?

$$a_1 = 16500$$
 $a_n = ?$
 $S_{10} = \frac{10}{2} (18500 + (10-1)750)$
 $a_n = ?$
 $s_{10} = \frac{10}{2} (18500 + (10-1)750)$
 $s_{10} = \frac{10}{2} (43750) - \frac{1}{2} (8750)$

2. Find $\sum_{n=1}^{14} (-5n+3)$ using one of the arithmetic series formulas.

$$a_1 = -2$$
 $a_n = -67$
 $s_1 = \frac{14}{2} \left(-2 + -67 \right) = \boxed{-483}$
 $d = \frac{14}{2} \left(-2 + -67 \right) = \boxed{-483}$

3. Evaluate the following sums:

a.
$$\sum_{n=1}^{7} (2n+7)$$

$$S_{1} = \frac{7}{3} (9+21) = 105$$
b.
$$\sum_{i=1}^{5} (3i-6)$$

$$S_{5} = \frac{5}{3} (-3+9)$$

$$1 = 15$$

4. You borrowed \$6000 and agreed to pay it back over 5 years. Your monthly payments were

a. How much did you pay over the life of the loan?

$$a_1 = 145$$

 $a_n = 100.75$
 $a_n = 60$
 $d = 60$

b. How much interest did she pay on this loan? That is, how much over \$6000 did she have to pay back?

Im of the following series:
$$\sum_{i=2}^{2} 2(3)^{i}$$

$$5 = \frac{(3(1-3^{5}))}{1-3} = \sqrt{72-6}$$

6. Find the partial sum of the following series:
$$\{1.01 + 2.02 + 4.04 + 8.08 + ... + 4236247.04\}$$

$$4236247.04 = 1.01(2)^{n-1}$$
 $523 = \frac{1.01(1-2^{23})}{1-2}$
 $523 = \frac{1.01(1-2^{23})}{1-2}$
 $(n-1)\log_2 = \log(4194304)$
 $523 = 8472493.07$

7. Because of air resistance, the length of each swing of a certain pendulum is 85% of the length of the previous swing. If the first swing has a length of 40 cm, find the total length the pendulum will swing before coming to rest.

$$5_{\infty} = \frac{40}{1-0.85} = 266.66 \, \text{cm}$$

Find the sum of the following series (if it exists. . .)

8.
$$\frac{1}{6} + \frac{1}{3} + \frac{2}{3} + \dots$$
 $r = 2$; divergent

9.
$$15+10+\frac{20}{3}+\frac{40}{9}+...$$
 $r=\frac{2}{3}$; Convergent

$$500 = \frac{15}{1 - 2/3} = 45$$

10.
$$3 - \frac{9}{2} + \frac{27}{4} - \frac{81}{8} + \dots$$
 $r = \frac{3}{2}$; divergent

11.
$$\sum_{n=1}^{\infty} -6(\frac{2}{3})^{n-1}$$
 $V=\frac{7}{3}$ convergent $S=\frac{-6}{1-\frac{2}{3}}=[-18]$